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Updates

HW 1 due Thursday (1-17-08)
Last time

Introduction
Units
Reliability engineering
Materials

This week
Load and stress analysis

Quiz #1 is Jan 29 (in class)
Covers material through Chapter 3 (first 2 weeks of class)



Equilibrium

Basic equations of equilibrium enable 
determination of unknown loads on a body

For a body at rest, (recalling from statics)
ΣF = 0 ΣM = 0

For a body in motion, (recalling from 
dynamics)

ΣF = ma ΣM = Iα



Determining loads

Machine and structural components are load-carrying members
We need to be able to analyze these loads in order to design 
components for the proper conditions
Determining loads

Engines/compressors operate at known torques and speeds 
(easy!)
Airplane structure loads depend on air turbulence, pilot decisions 
(not so easy)
Experimental methods / past performance

Often we can determine loads by using a free body diagram 
(FBD) 
Gives a concise view of all the forces acting on a rigid 
body



Steps for drawing FBD’s

1. Choose your body and detach it from all other bodies and the 
ground – sketch the contour

2. Show all external forces
From ground
From other bodies
Include the weight of the body acting at the center of gravity (CG)

3. Be sure to properly indicate magnitude and direction
Forces acting on the body, not by the body

4. Draw unknown external forces
Typically reaction forces at ground contacts
Recall that reaction forces constrain the body and occur at supports 
and connections

5. Include important dimensions



Example – Drawing FBD’s

2m 4m
B

1.5 m

2400 kg
A

CG

A - Pin - 2 Rx forces

B - Rocker - 1 Rx force

Fixed crane has mass of 1000 kg
Used to lift a 2400 kg crate
Find:  Determine the reaction forces at A and B



Crane example (FBD’s) cont.

1. Choose your body and detach it from 
all other bodies and the ground –
sketch the contour

2. Show all external forces (from 
ground, from other bodies).  Include 
weight of the body acting at the 
center of gravity (CG)

3. Be sure to properly indicate 
magnitude and direction (acting ON 
the body, not BY the body)

2m 4m
B

1.5 m

2400 kg
A

CG

A - Pin - 2 Rx forces

B - Rocker - 1 Rx force



Crane example (FBD’s) cont.

4. Draw unknown external 
forces (typically reaction 
forces at ground 
contacts).  Recall that 
reaction forces constrain 
the body and occur at 
supports and connections

5. Include important 
dimensions

Ay

Ax

B

1000 kg

2400 kg

1.5 m

2m 4m

Ay

Ax

B
W = (1000 kg)(9.81 m/s2) = 9.81 kN

(2400 kg)(9.81 m/s2) = 23.5 kN

2m 4m
B

1.5 m

2400 kg
A

CG

A - Pin - 2 Rx forces

B - Rocker - 1 Rx force



Find Ax, Ay, and B
ΣFx = 0 ΣFy = 0   ΣM = 0

Find B:       ΣMA = 0
B(1.5) – (9.81)(2) – (23.5)(6) = 0
B = 107.1 kN

Find Ax:       ΣFx = 0
Ax + B = 0
Ax = -107.1 kN
Ax = 107.1 kN

Find Ay:      ΣFy = 0
Ay – 9.81 – 23.5 = 0
Ay = 33.3 kN 

1.5 m

2m 4m

Ay

Ax

B
W = (1000 kg)(9.81 m/s2) = 9.81 kN

(2400 kg)(9.81 m/s2) = 23.5 kN

Which forces contribute to ΣMA?

B, 9.81, 23.5

Which forces contribute to ΣFX?
Ax, B

Which forces contribute to ΣFy?
Ay, 9.81, 23.5



3-D Equilibrium example

2 transmission belts pass 
over sheaves welded to an 
axle supported by bearings 
at B and D
A radius = 2.5”
C radius = 2”
Rotates at constant speed
Find T and the reaction 
forces at B, D
Assumptions:

Bearing at D exerts no axial 
thrust
Neglect weights of sheaves 
and axle



Draw FBD

Detach the body from ground 
(bearings at B and D)
Insert appropriate reaction 
forces

24 lb

Bz

By Dz

DyT

18 lb

30 lb



Solve for reaction forces for each axis

24 lb

Bz

By Dz

DyT

18 lb

30 lb

If we sum moments about x (along
the shaft), what forces are involved? 24lb, 18lb, 30 lb, T

If we sum moments about y,
what forces are involved? 24lb, 18lb, Dz

If we sum moments about z,
what forces are involved? 30lb, T, Dy

If we sum forces in y, what forces
will we need to consider? By, 30lb, T, Dy

If we sum forces in Z, what forces
do we need to consider? 24lb, 18lb, Bz, Dz



Solve for reaction forces for each axis
ΣMx = 0 = (24)(2.5) – 18(2.5) + 30(2) – T(2)
T = 37.5 lb

ΣMy = 0 = (24)(8) + (18)(8) – Dz(12)
Dz = 28 lb

ΣMz = 0 = -(30)(6) – (37.5)(6) + Dy(12)
Dy = 33.75 lb

ΣFy = 0 = By – 30 – 37.5 + Dy
By + Dy = 67.5 
By = 33.75 lb

ΣFz = 0 = 24 + 18 – Bz + Dz
42 + Dz = Bz
Bz = 70 lb

24 lb

Bz

By Dz

DyT

18 lb

30 lb

B = (33.75 lb)j – (70 lb)k D = (33.75 lb)j + (28 lb)k



Linearly Elastic Material Behavior

Some linearly elastic materials:
Metals
Wood
Concrete
Plastic
Ceramic and glass

Linearly elastic materials obey Hooke’s Laws!



Uniaxial Stress State

Hooke’s Law in uniaxial
tension-compression:

σx = Eεx

Also, for isotropic and 
homogenous material

Poisson’s Ratio
ν = -εy / εx

0 (cork) < ν < 0.5 (rubber)

xx

x

y



Thermal Stresses

Expansion of Parts due to temperature
without constraint – no stresses
with constraint – stress buildup

Expansion of a rod vs. a hole
Differential Thermal Expansion

Two material with differential thermal expansion 
rates that are bound together
Brass and steel
Metals vs. plastic



Hooke’s Law for Shear

τ = Gγ
G ?

Shear Modulus
Modulus of Rigidity

Note:  No equivalent to Poisson 
for shear (no coupling between 
axes)

yx

xy



Relating E and G

For linearly elastic, homogenous, isotropic 
material characterized by TWO independent 
parameters

)1(2 ν+
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Hooke’s Law for Biaxial Stress State
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Hooke’s Law for triaxial state of stress

x

xz

xy

zx

y

z

zy

yz yx

Most general case of static loading
Coupled:

Decoupled:

Note:
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More on Hooke’s Law

Used to relate loading to stress state through 
geometry
Analytical solutions for classical forms of loading

Axial cases:
Column in tension (trivial)
Column in compression (non-trivial)

We’ll do this later

Other cases:
Beam in pure bending
Beam in bending and shear
Shaft in torsion



Column in tension

Uniaxial tension

Hooke’s Law
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Beam in pure bending

What does PURE mean?
Moment is constant along the beam

Other assumptions
Symmetric cross-section
Uniform along the length of the beam
Linearly elastic
Homogenous 

Constant properties throughout
Isotropic 

Equal physical properties along each axis
Enable geometric arguments
Enable the use of Hooke’s Law to relate geometry (ε) to stress 
(σ)



Beam in pure bending
Result –

I is the area moment of inertia:
M is the applied bending moment
c is the point of interest for stress analysis, a distance 
(usually ymax) from the neutral axis (at y = 0)

If homogenous (E = constant), neutral axis passes 
through the centroid

Uniaxial tension:
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Example 

Beam with rectangular cross-section



Beam in pure bending example, cont.



Example

Find the maximum tensile and compressive 
stresses in the I-beam
Beam in pure bending --

I
Mc

=σ



Review of centroids

Recall Parallel Axis Theorem

I is the moment of inertia about any point
Ic is moment of inertia about the centroid
A is area of section
d is distance from section centroid to axis of I

2AdII c +=



Example, cont.

Recall:
c and I defined with respect to the neutral axis (NA)

First, we’ll need to find I

So…
We need to find the neutral axis
Assume the I-beam is homogenous
NA passes through the centroid of the cross-section



Finding the centroid

Neutral axis passes through the centroid
of the cross-sectional area

Divide into simple-shaped sections to find 
the centroid of a composite area
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Finding I – Moment of Inertia

Red dot shows centroid of the 
composite area that we just found
Similarly, we can find the moment of 
inertia of a composite area

Use parallel axis theorem to find I for 
the blue and yellow areas

Moment of inertia about a different point is the 
moment of inertia of the section about its 
centroid plus the area of the section times 
square of the distance to the point
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Finding I – Moment of Inertia, cont.
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Maximum tensile stress occurs at the base

Maximum compressive stress occurs at the top

Note, y is the distance from the point of interest (top or base) to the neutral 
axis

Total height of cross-section = 2h + h/2 = 10h/4
Neutral axis is at 3h/4

Finding the bending stresses
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Beams in bending and shear

Assumptions for the 
analytical solution:

σx = Mc/I holds even 
when moment is not 
constant along the 
length of the beam
τxy is constant 
across the width



Calculating the shear stress for beams in 
bending

V(x) = shear force
I = Iz = area moment of inertia about NA (neutral axis)
b(y) = width of beam

Where A’ is the area between y=y’ and the top (or bottom) of 
the beam cross-section 
General observations about Q:

Q is 0 at the top and bottom of the beam
Q is maximum at the neutral axis
τ = 0 at top and bottom of cross-section 
τ = max at neutral axis

Note, V and b can be functions of y
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Usually we have common cross-sections

τmax for common shapes on 
page 136

Example:
Rectangular cross-section

Shear and normal stress 
distributions across the cross-
section
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Relative magnitudes of normal and shear 
stresses
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For THIS loading, if h << L, then 
τmax <<  σmax and τ can be neglected

Rectangular
cross-section



Shafts in torsion

Assumptions
Constant moment along length
No lengthening or shortening 
of shaft
Linearly elastic
Homogenous

Where J is the polar moment of 
inertia

Note:
Circular shaft

Hollow shaft
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Recap: Primary forms of loading
Axial

Pure bending

Bending and shear

Torsion
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Questions

So, when I load a beam in pure bending, is there 
any shear stress in the material?  What about 
uniaxial tension?
Yes, there is!
The equations on the previous slide don’t tell the 
whole story
Recall:

When we derived the equations above, we always sliced 
the beam (or shaft) perpendicular to the long axis

If we make some other cut, we will in general get a 
different stress state



General case of planar stress

Infinitesimal piece of material:
A general state of planar stress is 
called a biaxial stress state
Three components of stress are 
necessary to specify the stress at 
any point

σx

σy

τxy



Changing orientation

Now let’s slice this element at any arbitrary angle to look at 
how the stress components vary with orientation
We can define a normal stress (σ) and shear stress (τ)
Adding in some dimensions, we can now solve a static 
equilibrium problem…



Static equilibrium equations
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From equilibrium…

We can find the stresses at any 
arbitrary orientation (σx’, σy’, τxy’)
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Mohr’s Circle

These equations can be represented 
geometrically by Mohr’s Circle
Stress state in a known orientation:
Draw Mohr’s circle for stress state:
φ is our orientation angle, which can be found 
by measuring FROM the line XY to the 
orientation axis we are interested in



Question from before…

Is a beam in pure bending subjected to 
any shear stress?
Take an element…
Draw Mohr’s Circle
τmax occurs at the orientation 2φ = 90º

φ = 45º I
My

=σ



Special points on Mohr’s Circle

σ1,2 – Principal stresses
At this orientation, one 
normal stress is maximum 
and shear is zero
Note, σ1 > σ2

τmax – Maximum shear 
stress (in plane)

At this orientation, normal 
stresses are equal and 
shear is at a maximum

Why are we interested in 
Mohr’s Circle?



Mohr’s Circle, cont.

A shaft in torsion has a shear stress distribution:

Why does chalk break like this…?

Look at an element and its stress state:

J
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Mohr’s circle for our element:

σ1 and σ2 are at 2φ = 90º
Therefore φ = 45 º
This is the angle of 
maximum shear!

The angle of maximum shear 
indicates how the chalk will 
fail in torsion



Example #1
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Example #1, cont.
Now we have:

x at ( -42, 30)
y at ( -81, -30)
C at (-61.5, 0)
R = 35.8

Find principal stresses:
σ1 = Cx + R = -25.7
σ2 = Cx – R = -97.3
τmax = R = 35.8
Orientation:

cwo
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xy 9.56
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Recall, 2φ is measured from the line XY to the principal 
axis.  This is the same rotation direction you use to draw 
the PRINCIPAL ORIENTATION ELEMENT



Example #1, cont.

Orientation of maximum shear
At what orientation is our element 
when we have the case of max 
shear?
From before, we have:

σ1 = Cx + R = -25.7
σ2 = Cx – R = -97.3
τmax = R = 35.8
φ = 28.5 º CW 

φmax = φ1,2 + 45º CCW 
φmax = 28.5 º CW + 45º CCW 

16.5 º CCW 



Example #2

( )0,400,
2

401200,
2

=⎟
⎠
⎞

⎜
⎝
⎛ −

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ + yx σσ

σx = 120
σy = -40
τxy = 50 ccw
x at (σx, τxy )

x at ( 120, -50)
y at (σy, τyx )

y at ( -40, 50)
Center 

Radius

( ) 3.94
2

4012050
2

2
2

2
2 =⎟

⎠
⎞

⎜
⎝
⎛ −−

+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+= yx

xyR
σσ

τ



Example #2, cont.
Now we have:

x at ( 120, -50)
y at ( -40, 50)
C at (40, 0)
R = 94.3

Find principal stresses:
σ1 = Cx + R = 134.3
σ2 = Cx – R = -54.3
τmax = R = 94.3
Orientation:
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Recall, 2φ is measured from the line XY to the principal 
axis.  This is the same rotation direction you use to draw 
the PRINCIPAL ORIENTATION ELEMENT



Example #2, cont.

Orientation of maximum shear
At what orientation is our 
element when we have the case 
of max shear?
From before, we have:

σ1 = Cx + R = 134.3
σ2 = Cx – R = -54.3
τmax = R = 94.3
φ = 16.0 º CCW 

φmax = φ1,2 + 45º CCW 
φmax = 16.0 º CCW + 45º CCW 

61.0 º CCW = 90.0 - 61.0 º CW 
= 29.0 º CW



3-D Mohr’s Circle and Max Shear
Max shear in a plane vs. Absolute Max shear

Biaxial State
of Stress

Still biaxial, but consider
the 3-D element



3-D Mohr’s Circle

τmax is oriented in a plane 45º from the x-y plane 
(2φ = 90º)

When using “max shear”, you must consider τmax
(Not τx-y max)



Out of Plane Maximum Shear for Biaxial State of Stress

Case 1
σ1,2 > 0
σ3 = 0

2
1

max
στ =

2
31

max
σσ

τ
−

=2
3

max
σ

τ =

Case 2
σ2,3 < 0
σ1 = 0

Case 3
σ1 > 0, σ3 < 0
σ2 = 0



Additional topics we will cover

3-13 stress concentration
3-14 pressurized cylinders
3-18 curved beams in bending
3-19 contact stresses



Stress concentrations

We had assumed no geometric irregularities
Shoulders, holes, etc are called discontinuities

Will cause stress raisers
Region where they occur – stress concentration

Usually ignore them for ductile materials in static loading
Plastic strain in the region of the stress is localized
Usually has a strengthening effect

Must consider them for brittle materials in static loading
Multiply nominal stress (theoretical stress without SC) by Kt, the 
stress concentration factor.
Find them for variety of geometries in Tables A-15 and A-16

We will revisit SC’s…



Stresses in pressurized cylinders

Pressure vessels, 
hydraulic cylinders, gun 
barrels, pipes
Develop radial and 
tangential stresses

Dependent on radius
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Stresses in pressurized cylinders, cont.

Longtudincal stresses exist 
when the end reactions to 
the internal pressure are 
taken by the pressure 
vessel itself

These equations only apply 
to sections taken a 
significant distance from the 
ends and away from any 
SCs
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Thin-walled vessels

If wall thickness is 1/20th or less of its radius, 
the radial stress is quite small compared to 
tangential stress
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Curved-surface contact stresses

Theoretically, contact between curved surfaces is a point or a 
line
When curved elastic bodies are pressed together, finite contact 
areas arise

Due to deflections
Areas tend to be small
Corresponding compressive stresses tend to be very high
Applied cyclically

Ball bearings
Roller bearings
Gears
Cams and followers
Result – fatigue failures caused by minute cracks

“surface fatigue”



Contact stresses

Contact between spheres
Area is circular

Contact between cylinders (parallel)
Area is rectangular

Define maximum contact pressure (p0) 
Exists on the load axis

Define area of contact
a for spheres
b and L for cylinders



Contact stresses - equations

First, introduce quantity Δ, a function of Young’s modulus (E) 
and Poisson’s ratio (ν) for the contacting bodies

Then, for two spheres,

For two parallel cylinders,
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Contact stresses

Contact pressure (p0) is also the value of the 
surface compressive stress (σz) at the load 
axis
Original analysis of elastic contact

1881
Heinrich Hertz of Germany

Stresses at the mating surfaces of curved 
bodies in compression:

Hertz contact stresses



Contact stresses

Assumptions for those equations
Contact is frictionless
Contacting bodies are 

Elastic
Isotropic
Homogenous
Smooth

Radii of curvature R1 and R2 are very large in 
comparison with the dimensions of the boundary 
of the contact surface



Elastic stresses below the surface along 
load axis (Figures4-43 and 4-45 in JMB)

Surface

Below surface
Spheres

Cylinders



Mohr’s Circle for Spherical Contact Stress



Mohr’s Circle for Roller Contact Stress



Bearing Failure Below Surface



Contact stresses

Most rolling members also tend to slide
Mating gear teeth
Cam and follower
Ball and roller bearings

Resulting friction forces cause other stresses
Tangential normal and shear stresses
Superimposed on stresses caused by normal 
loading



Curved beams in bending

Must use following assumptions
Cross section has axis of symmetry in a plane 
along the length of the beam
Plane cross sections remain plane after bending
Modulus of elasticity is same in tension and 
compression



Curved beams in bending, cont.
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