MECH 401 Mechanical Design Applications Dr. M. O'Malley – Master Notes

> Spring 2008 Dr. D. M. McStravick Rice University

Updates

- HW 1 due Thursday (1-17-08)
- Last time
 - Introduction
 - Units
 - Reliability engineering
 - Materials
- This week
 - Load and stress analysis
- Quiz #1 is Jan 29 (in class)
 - Covers material through Chapter 3 (first 2 weeks of class)

Equilibrium

- Basic equations of equilibrium enable determination of unknown loads on a body
- For a body at rest, (recalling from statics) • $\Sigma F = 0$ $\Sigma M = 0$
- For a body in motion, (recalling from dynamics)
 - $\Box \ \Sigma F = ma \qquad \qquad \Sigma M = I\alpha$

Determining loads

- Machine and structural components are load-carrying members
- We need to be able to analyze these loads in order to design components for the proper conditions
- Determining loads
 - Engines/compressors operate at known torques and speeds (easy!)
 - Airplane structure loads depend on air turbulence, pilot decisions (not so easy)
 - Experimental methods / past performance
- Often we can determine loads by using a free body diagram (FBD)
- Gives a concise view of all the forces acting on a rigid body

Steps for drawing FBD's

- 1. Choose your body and detach it from all other bodies and the ground sketch the contour
- 2. Show all external forces
 - From ground
 - From other bodies
 - Include the weight of the body acting at the center of gravity (CG)
- 3. Be sure to properly indicate magnitude and direction
 - Forces acting *on* the body, not *by* the body
- 4. Draw unknown external forces
 - Typically reaction forces at ground contacts
 - Recall that reaction forces constrain the body and occur at supports and connections
- 5. Include important dimensions

Example – Drawing FBD's

- Fixed crane has mass of 1000 kg
- Used to lift a 2400 kg crate
- Find: Determine the reaction forces at A and B

Crane example (FBD's) cont.

- Choose your body and detach it from all other bodies and the ground – sketch the contour
- 2. Show all external forces (from ground, from other bodies). Include weight of the body acting at the center of gravity (CG)
- Be sure to properly indicate magnitude and direction (acting ON the body, not BY the body)

Crane example (FBD's) cont.

- 4. Draw unknown external forces (typically reaction forces at ground contacts). Recall that reaction forces constrain the body and occur at supports and connections
- 5. Include important dimensions

Find A_x , A_v , and B Which forces contribute to ΣM_A ? B, 9.81, 23.5 • $\Sigma F_x = 0$ $\Sigma F_v = 0$ $\Sigma M = 0$ Which forces contribute to ΣF_{x} ? A, B • Find B: $+\Sigma M_{\Delta} = 0$ Which forces contribute to ΣF_{v} ? $\square B(1.5) - (9.81)(2) - (23.5)(6) = 0$ A_v, 9.81, 23.5 \square B = 107.1 kN \longrightarrow • Find A_x : $\xrightarrow{+} \Sigma F x = 0$ Ay $(2400 \text{ kg})(9.81 \text{ m/s}^2) = 23.5 \text{ kN}$ $\Box A_{x} + B = 0$ Ax 1.5 m $\Box A_{x} = -107.1 \text{ kN}$ \checkmark W = (1000 kg)(9.81 m/s²) = 9.81 kN □ A_x = 107.1 kN ← В • Find A_v : $+\uparrow \Sigma Fy = 0$ $\Box A_v - 9.81 - 23.5 = 0$ □ A_v = 33.3 kN ↑ 2m 4m

3-D Equilibrium example

- 2 transmission belts pass over sheaves welded to an axle supported by bearings at B and D
- A radius = 2.5"
- C radius = 2"
- Rotates at constant speed
- Find T and the reaction forces at B, D
- Assumptions:
 - Bearing at D exerts no axial thrust
 - Neglect weights of sheaves and axle

Draw FBD

 Detach the body from ground (bearings at B and D)

A

Β_z

 Insert appropriate reaction forces

24 lb

18 lb

Solve for reaction forces for each axis

If we sum moments about x (along the shaft), what forces are involved?

24lb, 18lb, 30 lb, T

Solve for reaction forces for each axis

•
$$+ \sum \Sigma M_x = 0 = (24)(2.5) - 18(2.5) + 30(2) - T(2)$$

 $\Box T = 37.5 \text{ lb}$

•
$$+5 \Sigma M_y = 0 = (24)(8) + (18)(8) - D_z(12)$$

• $D_z = 28 \text{ lb}$

•
$$+5 \Sigma M_z = 0 = -(30)(6) - (37.5)(6) + D_y(12)$$

• $D_y = 33.75 \text{ lb}$

• +
$$\Sigma F_y = 0 = B_y - 30 - 37.5 + D_y$$

• $B_y + D_y = 67.5$
• $B_y = 33.75 \text{ lb}$

•
$$\swarrow^+ \Sigma F_z = 0 = 24 + 18 - B_z + D_z$$

• $42 + D_z = B_z$
• $B_z = 70 \text{ lb}$

 $\mathbf{B} = (33.75 \text{ lb})\mathbf{j} - (70 \text{ lb})\mathbf{k}$

 $\mathbf{D} = (33.75 \text{ lb})\mathbf{j} + (28 \text{ lb})\mathbf{k}$

Linearly Elastic Material Behavior

- Some linearly elastic materials:
 - Metals
 - Wood
 - Concrete
 - Plastic
 - Ceramic and glass

Linearly elastic materials obey Hooke's Laws!

Uniaxial Stress State

- Hooke's Law in uniaxial tension-compression:
 - $\sigma_x = E\varepsilon_x$
- Also, for isotropic and homogenous material
 - Poisson's Ratio
 - $\Box \quad v = -\varepsilon_y / \varepsilon_x$
 - 0 (cork) < v < 0.5 (rubber)

Thermal Stresses

- Expansion of Parts due to temperature
 - without constraint no stresses
 - with constraint stress buildup
 - Expansion of a rod vs. a hole
 - **Differential Thermal Expansion**
 - Two material with differential thermal expansion rates that are bound together
 - Brass and steel
 - Metals vs. plastic

Hooke's Law for Shear

- $\tau = G\gamma$
- G ?
 - Shear Modulus
 - Modulus of Rigidity
- Note: No equivalent to Poisson for shear (no coupling between axes)

Relating E and G

$$G = \frac{E}{2(1+\nu)}$$

 For linearly elastic, homogenous, isotropic material characterized by TWO independent parameters

Hooke's Law for Biaxial Stress State

$$\varepsilon_x = \frac{\sigma_x}{E} - v \frac{\sigma_y}{E}$$

$$\varepsilon_{y} = \frac{\sigma_{y}}{E} - \nu \frac{\sigma_{x}}{E}$$

 $\gamma_{xy} = \frac{\tau_{xy}}{G}$

Hooke's Law for triaxial state of stress

- Most general case of static loading
- Coupled:

$$\varepsilon_{x} = \frac{\sigma_{x}}{E} - \frac{\nu}{E} (\sigma_{y} + \sigma_{z})$$

$$\varepsilon_{y} = \frac{\sigma_{y}}{E} - \frac{\nu}{E} (\sigma_{x} + \sigma_{z})$$

$$\sigma_{x} \qquad \varepsilon_{z} = \frac{\sigma_{z}}{E} - \frac{\nu}{E} (\sigma_{x} + \sigma_{y})$$

$$\bullet \quad \text{Decoupled:} \qquad \gamma_{xy} = \frac{\tau_{xy}}{G} \qquad \gamma_{xz} = \frac{\tau_{xz}}{G} \qquad \gamma_{yz} = \frac{\tau_{yz}}{G}$$

$$\bullet \quad \text{Note:} \qquad G = \frac{E}{2(1 + \nu)}$$

More on Hooke's Law

- Used to relate loading to stress state through geometry
- Analytical solutions for classical forms of loading
 - Axial cases:
 - Column in tension (trivial)
 - Column in compression (non-trivial)
 - We'll do this later
 - Other cases:
 - Beam in pure bending
 - Beam in bending and shear
 - Shaft in torsion

Column in tension

Beam in pure bending

- What does PURE mean?
 - Moment is constant along the beam
- Other assumptions
 - Symmetric cross-section
 - Uniform along the length of the beam
 - Linearly elastic
 - Homogenous
 - Constant properties throughout
 - Isotropic
 - Equal physical properties along each axis
- Enable geometric arguments
- Enable the use of Hooke's Law to relate geometry (ε) to stress
 (σ)

Beam in pure bending

- **Result –** $\sigma_x = \frac{Mc}{I_z} = \frac{M}{Z}$ $Z = \frac{I}{c}$ (section modulus)
 - I is the area moment of inertia: $I_z = \int y^2 dA$
 - M is the applied bending moment
 - c is the point of interest for stress analysis, a distance (usually y_{max}) from the neutral axis (at y = 0)
 - If homogenous (E = constant), neutral axis passes through the centroid
 - Uniaxial tension:

$$\varepsilon_{x} = \frac{My}{EI}$$
$$\varepsilon_{y} = \varepsilon_{z} = \frac{-\nu My}{EI}$$

Beam with rectangular cross-section

Example

- Find the maximum tensile and compressive stresses in the I-beam
- Beam in pure bending --

$$\sigma = \frac{Mc}{I}$$

Review of centroids

Recall Parallel Axis Theorem

$$I = I_c + Ad^2$$

- I is the moment of inertia about any point
- I_c is moment of inertia about the centroid
- A is area of section
- d is distance from section centroid to axis of I

Example, cont.

Recall:

c and I defined with respect to the neutral axis (NA)

First, we'll need to find I

So...

- We need to find the neutral axis
- Assume the I-beam is homogenous
- NA passes through the centroid of the cross-section

Finding the centroid

- Neutral axis passes through the centroid of the cross-sectional area
- Divide into simple-shaped sections to find the centroid of a composite area

$$\overline{y} = \frac{\sum \overline{y}_i A_i}{\sum A_i}$$

$$\overline{y} = \frac{\left(\frac{h}{4}\right)(3hb) + \left(\frac{h}{2} + h\right)(2hb)}{3hb + 2hb} = \frac{3}{4}h$$

h

Finding I – Moment of Inertia

- Red dot shows centroid of the composite area that we just found
- Similarly, we can find the moment of inertia of a composite area

$$I_{z} = \sum I_{i_{z}}$$
$$I = I_{yellow} + I_{blue}$$

- Use parallel axis theorem to find I for the blue and yellow areas
 - Moment of inertia about a different point is the moment of inertia of the section about its centroid plus the area of the section times square of the distance to the point

$$I = I_c + Ad^2$$

Finding I – Moment of Inertia, cont.

$$I_{yellow} = \frac{(6b)(\frac{h}{2})^3}{12} + (3hb)(\frac{h}{2})^2 = \frac{13}{16}bh^3$$

Finding the bending stresses

Maximum tensile stress occurs at the base

$$\sigma_{base} = \frac{Mc}{I} = \frac{M(\frac{3}{4}h)}{\frac{125}{48}bh^3} = \frac{36}{125} \left(\frac{M}{bh^2}\right)$$

Maximum compressive stress occurs at the top

$$\sigma_{top} = \frac{Mc}{I} = \frac{-M(\frac{7}{4}h)}{\frac{125}{48}bh^3} = \frac{-84}{125} \left(\frac{M}{bh^2}\right)$$

- Note, y is the distance from the point of interest (top or base) to the neutral axis
 - Total height of cross-section = 2h + h/2 = 10h/4
 - Neutral axis is at 3h/4

Beams in bending and shear

(b)

- Assumptions for the analytical solution:
 - $\sigma_x = \frac{Mc}{I}$ holds even when moment is not constant along the length of the beam
 - τ_{xy} is constant across the width

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Calculating the shear stress for beams in bending $\tau_{xy} = \frac{VQ}{Ib}$

- V(x) = shear force
- $I = I_z$ = area moment of inertia about NA (neutral axis)
- b(y) = width of beam

$$Q(y) = \int_{A'} y dA'$$

- Where A' is the area between y=y' and the top (or bottom) of the beam cross-section
- General observations about Q:
 - Q is 0 at the top and bottom of the beam
 - Q is maximum at the neutral axis
 - $\tau = 0$ at top and bottom of cross-section
 - τ = max at neutral axis
- Note, V and b can be functions of y

Usually we have common cross-sections

- τ_{max} for common shapes on page 136
- Example:
 - Rectangular cross-section

$$Q = \frac{b}{2} \left[\left(\frac{h}{2} \right)^2 - y^2 \right]$$

 Shear and normal stress distributions across the crosssection

Relative magnitudes of normal and shear stresses D $\tau_{\max} = \frac{3}{4} \frac{V}{A} = \frac{3}{4} \left(\frac{\frac{P}{2}}{bh}\right) = \frac{3P}{8bh}$ Rectangular h cross-section b $\sigma_{\max} = \frac{My}{I} = \frac{3}{2} \left(\frac{PL}{hh^2} \right)$ P/2P/2 $\frac{\tau_{\max}}{\sigma_{\max}} = \frac{1}{4} \left(\frac{h}{l} \right)$ P/2 Х V -P/2 PL/4 For THIS loading, if h << L, then Μ τ_{max} << $\,\sigma_{\text{max}}$ and τ can be neglected

Shafts in torsion

Assumptions

- Constant moment along length
- No lengthening or shortening of shaft
- Linearly elastic
- Homogenous

$$\tau_{z\theta} = \frac{I}{J}$$

T

• Where J is the polar moment of inertia
$$J = \int r^2 dA$$

Note:

• Circular shaft $J = \frac{\pi d^4}{32}$

A

• Hollow shaft $J = \frac{\pi}{32} \left[d_o^4 - d_i^4 \right]$

Recap: Primary forms of loading $\sigma = \frac{F}{A}$ Axial F → F F 🔶 🗌 $\sigma = \frac{Mc}{I}$ Pure bending $\sigma = \frac{Mc}{I}$ Bending and shear

Questions

- So, when I load a beam in pure bending, is there any shear stress in the material? What about uniaxial tension?
- Yes, there is!
- The equations on the previous slide don't tell the whole story
- Recall:
 - When we derived the equations above, we always sliced the beam (or shaft) perpendicular to the long axis
- If we make some other cut, we will in general get a different stress state

General case of planar stress

- Infinitesimal piece of material:
- A general state of planar stress is called a <u>biaxial</u> stress state
- Three components of stress are necessary to specify the stress at any point
 - **σ**_x
 - **ο** σ_v

$$\neg \tau_{xy}$$

Changing orientation

- Now let's slice this element at any arbitrary angle to look at how the stress components vary with orientation
- We can define a normal stress (σ) and shear stress (τ)
- Adding in some dimensions, we can now solve a static equilibrium problem...

Static equilibrium equations

$$y = l\cos\phi$$
$$x = l\sin\phi$$

$$\sigma(\cos\phi)dl - \tau(\sin\phi)dl = -\sigma_x dy - \tau_{xy} dx$$
$$\sigma(\sin\phi)dl + \tau(\cos\phi)dl = -\sigma_y dx - \tau_{xy} dy$$

From equilibrium...

 We can find the stresses at any arbitrary orientation (σ_x', σ_y', τ_{xy}')

$$\sigma_x' = \frac{\sigma_x + \sigma_y}{2} + \left(\frac{\sigma_x - \sigma_y}{2}\right) \cos(2\phi) + \tau_{xy} \sin(2\phi)$$
$$\sigma_y' = \frac{\sigma_x + \sigma_y}{2} - \left(\frac{\sigma_x - \sigma_y}{2}\right) \cos(2\phi) - \tau_{xy} \sin(2\phi)$$
$$\tau_{xy}' = -\left(\frac{\sigma_x - \sigma_y}{2}\right) \sin(2\phi) + \tau_{xy} \cos(2\phi)$$

Mohr's Circle

- These equations can be represented geometrically by Mohr's Circle
- Stress state in a known orientation:
- Draw Mohr's circle for stress state:
- φ is our orientation angle, which can be found by measuring FROM the line XY to the orientation axis we are interested in

Question from before...

- Is a beam in pure bending subjected to any shear stress?
- Take an element...
- Draw Mohr's Circle
- τ_{max} occurs at the orientation 2φ = 90°
 φ = 45°

Special points on Mohr's Circle

- σ_{1,2} Principal stresses
 At this orientation, one
 - normal stress is maximum and shear is zero
 - Note, $\sigma_1 > \sigma_2$
- τ_{max} Maximum shear stress (in plane)
 - At this orientation, normal stresses are equal and shear is at a maximum
- Why are we interested in Mohr's Circle?

Mohr's Circle, cont.

Mt

A shaft in torsion has a shear stress distribution:

$$\tau = \frac{Tr}{J}$$

Why does chalk break like this...?

Look at an element and its stress state:

$$\sqrt{\frac{y}{J}} \tau = \frac{Tr}{J}$$

Mohr's circle for our element:

- σ_1 and σ_2 are at $2\phi = 90^\circ$
- Therefore $\phi = 45^{\circ}$
- This is the angle of maximum shear!
 - The angle of maximum shear indicates how the chalk will fail in torsion

Example #1

- σ_x = -42
- σ_y = -81
- $\tau_{xy} = 30 \text{ cw}$
- x at (σ_x, τ_{xy})
 x at (-42, 30)
- y at (σ_y, τ_{yx})
 y at (-81, -30)
- Center

$$\left(\frac{\sigma_x + \sigma_y}{2}, 0\right) = \left(\frac{-42 - 81}{2}, 0\right) = (-61.5, 0)$$

Radius

$$R = \sqrt{\tau_{xy}^{2} + \left(\frac{\sigma_{x} - \sigma_{y}}{2}\right)^{2}} = \sqrt{30^{2} + \left(\frac{-42 - (-81)}{2}\right)^{2}} = 35.8$$

Example #1, cont.

- Now we have:
 - □ x at (-42, 30)
 - □ y at (-81, -30)
 - □ C at (-61.5, 0)
 - □ R = 35.8
- Find principal stresses:
 - $\sigma_1 = C_x + R = -25.7$
 - $\Box \sigma_2 = C_x R = -97.3$

$$\Box \quad \tau_{max} = R = 35.8$$

• Orientation:

$$2\phi = \tan^{-1} \left(\frac{2\tau_{xy}}{\sigma_x - \sigma_y} \right) = \tan^{-1} \left(\frac{60}{39} \right) = 56.9^{\circ} \, cw$$

Recall, 2ϕ is measured from the line XY to the principal axis. This is the same rotation direction you use to draw the PRINCIPAL ORIENTATION ELEMENT

Example #1, cont.

- Orientation of maximum shear
- At what orientation is our element when we have the case of max shear?
- From before, we have:
 - $\Box \sigma_1 = C_x + R = -25.7$
 - $\sigma_2 = C_x R = -97.3$
 - $\Box \quad \tau_{max} = R = 35.8$
 - □ φ = 28.5 ° CW
- $\phi_{max} = \phi_{1,2} + 45^{\circ} CCW$
- $\phi_{max} = 28.5 \circ CW + 45^{\circ} CCW$
 - □ 16.5 ° CCW

Example #2

- σ_x = 120
- σ_y = -40
- $\tau_{xy} = 50 \text{ ccw}$
- x at (σ_x, τ_{xy})
 x at (120, -50)
- y at (σ_y, τ_{yx})
 y at (-40, 50)

Center

$$\left(\frac{\sigma_x + \sigma_y}{2}, 0\right) = \left(\frac{120 - 40}{2}, 0\right) = (40, 0)$$

Radius

$$R = \sqrt{\tau_{xy}^{2} + \left(\frac{\sigma_{x} - \sigma_{y}}{2}\right)^{2}} = \sqrt{50^{2} + \left(\frac{120 - (-40)}{2}\right)^{2}} = 94.3$$

Example #2, cont.

the PRINCIPAL ORIENTATION ELEMENT

Example #2, cont.

- Orientation of maximum shear
- At what orientation is our element when we have the case of max shear?
- From before, we have:

•
$$\sigma_1 = C_x + R = 134.3$$

• $\sigma_2 = C_x - R = -54.3$
• $\tau_{max} = R = 94.3$
• $\phi = 16.0 \circ CCW$
• $\phi_{max} = \phi_{1,2} + 45^{\circ} CCW$
• $\phi_{max} = 16.0 \circ CCW + 45^{\circ} CCW$
• $61.0 \circ CCW = 90.0 - 61.0 \circ CW$

□ = 29.0 ° CW

3-D Mohr's Circle and Max Shear

Max shear in a plane vs. Absolute Max shear

3-D Mohr's Circle

- τ_{max} is oriented in a plane 45° from the x-y plane
 (2φ = 90°)
- When using "max shear", you must consider τ_{max}
 (Not τ_{x-y max})

Out of Plane Maximum Shear for Biaxial State of Stress

• Case 1 • $\sigma_{1,2} > 0$ • $\sigma_3 = 0$ • $\tau_{max} = \frac{\sigma_1}{2}$

Case 3 $\sigma_1 > 0, \sigma_3 < 0$ $\sigma_2 = 0$ $\tau_{max} = \frac{|\sigma_1 - \sigma_3|}{2}$

Additional topics we will cover

- 3-13 stress concentration
- 3-14 pressurized cylinders
- 3-18 curved beams in bending
- 3-19 contact stresses

Stress concentrations

- We had assumed no geometric irregularities
- Shoulders, holes, etc are called discontinuities
 - Will cause stress raisers
 - Region where they occur stress concentration
- Usually ignore them for ductile materials in static loading
 - Plastic strain in the region of the stress is localized
 - Usually has a strengthening effect
- Must consider them for brittle materials in static loading
 - Multiply nominal stress (theoretical stress without SC) by K_t, the stress concentration factor.
 - □ Find them for variety of geometries in Tables A-15 and A-16
- We will revisit SC's...

Stresses in pressurized cylinders

- Pressure vessels, hydraulic cylinders, gun barrels, pipes
- Develop radial and tangential stresses
 - Dependent on radius

for $p_o = 0$

Stresses in pressurized cylinders, cont.

 Longtudincal stresses exist when the end reactions to the internal pressure are taken by the pressure vessel itself

$$\sigma_l = \frac{r_i^2 p_i}{r_o^2 - r_i^2}$$

 These equations only apply to sections taken a significant distance from the ends and away from any SCs

distribution

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

(b) Radial stress distribution

Thin-walled vessels

 If wall thickness is 1/20th or less of its radius, the radial stress is quite small compared to tangential stress

$$(\sigma_{t})_{avg} = \frac{pd_{i}}{2t}$$

$$(\sigma_{t})_{max} = \frac{p(d_{i}+t)}{2t}$$

$$\sigma_{l} = \frac{pd_{i}}{4t}$$

Curved-surface contact stresses

- Theoretically, contact between curved surfaces is a point or a line
- When curved *elastic* bodies are pressed together, finite contact areas arise
 - Due to deflections
 - Areas tend to be small
 - Corresponding compressive stresses tend to be very high
 - Applied cyclically
 - Ball bearings
 - Roller bearings
 - Gears
 - Cams and followers
 - Result fatigue failures caused by minute cracks
 - "surface fatigue"

Contact stresses

- Contact between spheres
 - Area is circular
- Contact between cylinders (parallel)
 - Area is rectangular
- Define maximum contact pressure (p_0)
 - Exists on the load axis
- Define area of contact
 - □ *a* for spheres
 - □ *b* and *L* for cylinders

(a) Two spheres

Contact stresses - equations

 First, introduce quantity ∆, a function of Young's modulus (E) and Poisson's ratio (v) for the contacting bodies

$$\Delta = \frac{1 - {v_1}^2}{E_1} + \frac{1 - {v_2}^2}{E_2}$$

Then, for two spheres,

$$p_0 = 0.578 \left(\sqrt[3]{\frac{F(1/R_1 + 1/R_2)}{\Delta^2}} \right) \qquad a = 0.908 \left(\sqrt[3]{\frac{F\Delta}{1/R_1 + 1/R_2}} \right)$$

For two parallel cylinders,

$$p_0 = 0.564 \left(\sqrt{\frac{F(1/R_1 + 1/R_2)}{L\Delta}} \right) \qquad b = 1.13 \left(\sqrt{\frac{F\Delta}{L(1/R_1 + 1/R_2)}} \right)$$

Contact stresses

- Contact pressure (p₀) is also the value of the surface compressive stress (σ_z) at the load axis
- Original analysis of elastic contact
 1881
 - Heinrich Hertz of Germany
- Stresses at the mating surfaces of curved bodies in compression:
 - Hertz contact stresses

Contact stresses

- Assumptions for those equations
 - Contact is frictionless
 - Contacting bodies are
 - Elastic
 - Isotropic
 - Homogenous
 - Smooth
 - Radii of curvature R₁ and R₂ are very large in comparison with the dimensions of the boundary of the contact surface

Elastic stresses below the surface along load axis (Figures4-43 and 4-45 in JMB)

FIGURE 9.15

Elastic stresses below the surface, along the load axis (the z-axis; x = 0, y = 0; for $\nu = 0.3$).

Bearing Failure Below Surface

graph of a section perpendicular to a pin race showing a system of cracks. The bearing had run several hours with a mud containing sulfide; there were no cracks or pits on the race surface.
Contact stresses

Most rolling members also tend to slide

- Mating gear teeth
- Cam and follower
- Ball and roller bearings
- Resulting friction forces cause other stresses
 - Tangential normal and shear stresses
 - Superimposed on stresses caused by normal loading

Curved beams in bending

- Must use following assumptions
 - Cross section has axis of symmetry in a plane along the length of the beam
 - Plane cross sections remain plane after bending
 - Modulus of elasticity is same in tension and compression

Curved beams in bending, cont.

